Sky is the limit. The concept of a smart heart valve scaffold

No matter what shade of red your Valentine’s Day was last month—sultry or sullen, sad or sweet—your heart beat more than 100,000 times, pumping 7500 liters of blood. Designing a device to achieve such precision and maintain it over a lifetime (about 70 years) requires integration of biology and engineering at a staggering level. Understandably then, despite great progress, design of adaptable, living heart valves has not been achieved. Prosthetic valves, for example, are nonliving structures that lack the functionality to respond to dynamic blood flow across days and years or the ability to grow with younger patients. Bouten and colleagues tackled this challenge with a fully synthetic heart valve designed from slowly degrading polymer that utilizes structural features to promote colonization by host cells, allowing the synthetic valve to be slowly replaced by functional tissue.

“50 shades of red”
By Christopher M. Jewell
Science Translational Medicine 01 Mar 2017

Continue Reading

3D weaving loom – the future of material engineering


Conventional weaving technology allows to create various textile materials that find their applications in multiple fields – from art to industry. Properties of woven textile materials are unique compared to polymeric films and other flat materials as they are more responsive, and shapeable, thus in many cases, having better mechanical performance. They are also widely used as reinforcement for composites, being their crucial constituent. Although versatility of woven textiles is unquestionable, their 2D form significantly limits their applications. Also their peculiar mechanical performance makes them a material that should not be omitted when we think of 3D constructs. Unlike 3D printed materials, 3D woven fabrics are much more consistent, do not require any post-processing and are characterised by high flexibility. Also for many applications, their permeable form is a desired feature. For example in an implantation it is a crucial characteristic that allows tissue to overgrow the material, easing the implant’s acceptance by the system. Moreover, the 3D textile can act as a reinforcement for more complicated composite materials with excellent mechanical behaviour due to the material’s uniformity (in normal composite the textiles often overlap each other causing uniformities in the material).

Continue Reading

Printing hearts from seaweed

“The future of heart valve replacements may lie in a combination of seaweeds and 3D printing”

Please, read an article, where I highlight my conception of 3D printing of heart valves from alginate:

Artykuł screen


Additional links:

Link to the offline version (text only)

Link to *PDF copy of the article

Lecture from a friend

Link to TED page

3D Challenge at Texas A&M Qatar

From 1’st-3’rd of of May I had a chance to take part in 3D Challenge at Texas A&M Qatar, where I presented the principles of my project concerning 3D-printed heart valve scaffolds. The project’s presentation was distinguished for its scientific value and received a first place award.

Continue Reading

Sheep’s heart valve at work

The performance of sheep’s heart valve working externally.